FACULTY OF CHEMISTRY

N	COURSE	PROFESSOR	SEMESTER	LANGUAGE/L EVEL	ECTS CREDITS	STUDY LEVEL	COURSE DESCRIPTION
1		Assoc. Prof. Petya Marinova, PhD	S	EN/B1	5	Bachelor	This course aims at acquainting students with the basic principles, theories and relationships in chemistry. The following subjects are included: atomic structure, periodicity, chemical bonding, intermolecular forces, coordination compounds, chemical kinetics, chemical equilibrium, solutions, and acids and bases.
2	•	Assoc. Prof. Petya Marinova, PhD	S	EN/B1	5	Bachelor	The course aims at acquainting students with the properties of the chemical elements and their compounds. The elements are presented in the following order: hydrogen, alkali elements, alkaline-earth elements, group 13 elements, group 14 elements, group 15 elements, group 16 elements, group 17 elements, group 18 elements, d-block elements, and f-block elements.
3	, ,	Chief. Assist. Prof. Kiril Simitchiev, PhD	W/S	EN/B1	10	Bachelor	The practice covers research activities in the field of elemental analysis – methods for separation and concentration in combination with atomic spectrometry techniques as detection tool.

4	Software Programming in Chemistry <mark>(Lectures)</mark>	Assoc. Prof. Nikolay Kochev, PhD	W/S	EN/B1	5	Bachelor	The course is based on object oriented language Java and aims at development of basic programming skills, logical reasoning and algorithmic strategies. The student will learn the good practices in software programming and technologies based on open source and open data. Major part of the exercises are in the field of Chemoinformatics and include solving practical problems concerning the manipulation of chemical structure information and its use in QSAR modelling and other Chemoinformatics fields.
5	Chemoinformatics (<mark>Lectures)</mark>	Assoc. Prof. Nikolay Kochev, PhD	W/S	EN/B1	5	Bachelor	Chemoinformatics is an interdisciplinary field where the informatics methods are applied to solve problems in chemistry. Chemoinformatics course includes methods for representation, processing, analysis and modeling of the information related to the chemical compounds and their properties as well as specific approaches for computer handling of topologically represented structures, substructure searching in chemical databases, visualization of 2D and 3D chemical structures, QSAR modelling applied in various stages of discovering, designing and synthesizing biologically active compounds and new materials.

6	Chemoinformatics (<mark>Research practice)</mark>	Assoc. Prof. Nikolay Kochev, PhD	W/S	EN/B1	10	Bachelor	Chemoinformatics practice includes activities and practical exercises on chemical compound representation, processing and analysis of the information related to molecules and their properties. Students will work with specialized software for computer handling of topologically represented structures, searching in chemical databases, molecular descriptor calculations, Molecular Mechanics modeling of 3D chemical structures, conformational analysis and QSAR modelling.
7	Quality in Analytical Laboratories (<mark>Lectures</mark>)	Assoc. Prof. Veselin Kmetov, PhD	W/S	EN/B1	6	Bachelor	Quality in Analytical Laboratories is a discipline that gives knowledge about current metrological requirements to the measurement results in chemical analysis. Main topics which will be covered, are traceability and calculation of uncertainty of the measurement results as well as validation of method of analysis. Subtopics include evaluation of the quality of calibration procedure, compliance assessments, improving precision by signal smoothing, principles and application of ANOVA, use of certified reference materials, participation in proficiency testing and interlaboratory comparisons, setting and using target uncertainty in chemical measurements.
8	Biochemistry <mark>(Lectures)</mark>	Assoc. Prof. Stoyanka Atanasova, PhD	W/S	EN/B1	6	Bachelor	The course focuses on the chemical, physical, and molecular underpinnings of life, as well as the molecular basis of human diseases. The flexible program of study is designed to provide excellent training and research opportunities individually tailored to students needs.

9	Advanced Organic Chemistry <mark>(Lectures)</mark>	Assoc. Prof. Plamen Angelov, PhD	S	EN/B1	6	Bachelor	The course covers classic and modern methods for C-C bond formation and functional group manipulations with focus on the underlying reaction mechanisms and stereochemistry. Syntheses of complex natural products are included as examples and case studies in order to build better understanding of the teaching material.
10	Physical Chemistry (Lectures)	Prof. Vassil Delchev, PhD, Dr. Sc.	W/S	EN/B1	5	Bachelor	
11	Physical Chemistry (Research practice)	Chief. Assist. Prof. Dimitar Petrov, PhD	w	EN/B1	10	Bachelor	The proposed laboratory exercises will help the students in their skills to solve examples and tasks from all major sections of physical chemistry that are necessary for its practical use.

12	Chemical Kinetics (Lectures)	Assoc. Prof. Nina Dimcheva, PhD	S	EN/B1	6	Bachelor	The basic course on Chemical Kinetics comprises both theoretical (lectures, discussions and problems solving) and practical (laboratory practice) knowledge that aim at developing students' skills in acquiring important kinetic information, viz. reaction order, rate constant, activation energy etc The course starts with the fundamentals of formal kinetics, where the basic concepts (velocity, rate constant, reaction order, Arrhenius' activation energy, rate-limiting step etc.) are briefly characterized. Attention is paid also on the different experimental techniques employed for kinetic characterization of chemical reactions. The theories of chemical kinetics (collision theory and the transition state theory), as well as catalytic processes – homogeneous and heterogeneous, followed by some specifics types of reactions – chain reactions, are further considered in the course.
13	Food Chemistry <mark>(Research</mark> practice)	Assist. Prof. Zhana Petkova, PhD	S	EN/B1	10	Bachelor	The course is focused on chemistry of foodstuffs, food components (lipids, proteins, carbohydrates), individual composition of biologically active components (fatty acids, phospholipids, sterols, tocopherols) and their analysis.